|
Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons. == Definition == The neutral current that gives the interaction its name is that of the interacting particles. For example, the neutral-current contribution to the → elastic scattering amplitude : and and are the vector and axial vector couplings for fermion . The boson can couple to any Standard Model particle, except gluons and photons. However, any interaction between two charged particles that can occur via the exchange of a virtual boson can also occur via the exchange of a virtual photon. Unless the interacting particles have energies on the order of the boson mass (91 GeV) or higher, the virtual boson exchange has an effect of a tiny correction ( ) to the amplitude of the electromagnetic process. Particle accelerators with energies necessary to observe neutral current interactions and to measure the mass of boson weren't available until 1983. On the other hand, boson interactions involving neutrinos have distinctive signatures: They provide the only known mechanism for elastic scattering of neutrinos in matter; neutrinos are almost as likely to scatter elastically (via boson exchange) as inelastically (via boson exchange). Weak neutral currents were predicted in 1973 by Abdus Salam, Sheldon Glashow and Steven Weinberg,〔(【引用サイトリンク】url=http://www.nobel.se/physics/laureates/1979 )〕 and confirmed shortly thereafter in 1973, in a neutrino experiment in the Gargamelle bubble chamber at CERN. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「neutral current」の詳細全文を読む スポンサード リンク
|